Saturday, September 13, 2008

Large Hadron Collider and

For those of my students who attend my Physics class, you have definately understand what is LHC all about. We learn about quarks and today sciencetists have decided to move a huge step towards the future by exploring the defination of "mass".
I would like to congratulate most of my class students who take the advantage to learn outside the scope of Malaysian Educational System. Just to inform you guys!!! our class rocks!! and guess what, you are the youngest generation who can understand the defination of quarks!!!!!

The Large Hadron Collider (LHC), the biggest and most complicated particle physics experiment ever seen, is nearing completion and is scheduled to start operating this year.
The LHC will accelerate bunches of protons to the highest energies ever generated by a machine, colliding them head-on 30 million times a second, with each collision spewing out thousands of particles at nearly the speed of light.

Physicists expect the LHC to bring about a new era of particle physics in which major conundrums about the composition of matter and energy in the universe will be resolved.
You could think of it as the biggest, most powerful microscope in the history of science. The Large Hadron Collider (LHC), now being completed underneath a circle of countryside and villages a short drive from Geneva, will peer into the physics of the shortest distances (down to a nano-nanometer) and the highest energies ever probed. For a decade or more, particle physicists have been eagerly awaiting a chance to explore that domain, sometimes called the tera­scale because of the energy range involved: a trillion electron volts, or 1 TeV. Significant new physics is expected to occur at these energies, such as the elusive Higgs particle (believed to be responsible for imbuing other particles with mass) and the particle that constitutes the dark matter that makes up most of the material in the universe.

The mammoth machine, after a nine-year construction period, is scheduled (touch wood) to begin producing its beams of particles later this year. The commissioning process is planned to proceed from one beam to two beams to colliding beams; from lower energies to the tera­scale; from weaker test intensities to stronger ones suitable for producing data at useful rates but more difficult to control. Each step along the way will produce challenges to be overcome by the more than 5,000 scientists, engineers and students collaborating on the gargantuan effort. When I visited the project last fall to get a firsthand look at the preparations to probe the high-energy frontier, I found that everyone I spoke to expressed quiet confidence about their ultimate success, despite the repeatedly delayed schedule. The particle physics community is eagerly awaiting the first results from the LHC. Frank Wil­czek of the Massachusetts Institute of Technology echoes a common sentiment when he speaks of the prospects for the LHC to produce “a golden age of physics.”

A Machine of SuperlativesTo break into the new territory that is the tera­scale, the LHC’s basic parameters outdo those of previous colliders in almost every respect. It starts by producing proton beams of far higher energies than ever before. Its nearly 7,000 magnets, chilled by liquid helium to less than two kelvins to make them superconducting, will steer and focus two beams of protons traveling within a millionth of a percent of the speed of light. Each proton will have about 7 TeV of energy—7,000 times as much energy as a proton at rest has embodied in its mass, courtesy of Einstein’s E = mc2. That is about seven times the energy of the reigning record holder, the Tevatron collider at Fermi National Accelerator Laboratory in Batavia, Ill. Equally important, the machine is designed to produce beams with 40 times the intensity, or luminosity, of the Tevatron’s beams. When it is fully loaded and at maximum energy, all the circulating particles will carry energy roughly equal to the kinetic energy of about 900 cars traveling at 100 kilometers per hour, or enough to heat the water for nearly 2,000 liters of coffee.

The protons will travel in nearly 3,000 bunches, spaced all around the 27-kilometer circumference of the collider. Each bunch of up to 100 billion protons will be the size of a needle, just a few centimeters long and squeezed down to 16 microns in diameter (about the same as the thinnest of human hairs) at the collision points. At four locations around the ring, these needles will pass through one another, producing more than 600 million particle collisions every second. The collisions, or events, as physicists call them, actually will occur between particles that make up the protons—quarks and gluons. The most cataclysmic of the smashups will release about a seventh of the energy available in the parent protons, or about 2 TeV. (For the same reason, the Tevatron falls short of exploring tera­scale physics by about a factor of five, despite the 1-TeV energy of its protons and antiprotons.)